Method of Building Detection in Optical Remote Sensing Images Based on SegFormer

Author:

Li Meilin1ORCID,Rui Jie1,Yang Songkun2,Liu Zhi1,Ren Liqiu1,Ma Li1,Li Qing1,Su Xu1,Zuo Xibing1ORCID

Affiliation:

1. Department of Geographic Information, Information Engineering University, Wutong Street High-Tech District, Zhengzhou 450001, China

2. School of Computer Science & Technology, Beijing Institute of Technology, Haidian District, Beijing 100081, China

Abstract

An appropriate detection network is required to extract building information in remote sensing images and to relieve the issue of poor detection effects resulting from the deficiency of detailed features. Firstly, we embed a transposed convolution sampling module fusing multiple normalization activation layers in the decoder based on the SegFormer network. This step alleviates the issue of missing feature semantics by adding holes and fillings, cascading multiple normalizations and activation layers to hold back over-fitting regularization expression and guarantee steady feature parameter classification. Secondly, the atrous spatial pyramid pooling decoding module is fused to explore multi-scale contextual information and to overcome issues such as the loss of detailed information on local buildings and the lack of long-distance information. Ablation experiments and comparison experiments are performed on the remote sensing image AISD, MBD, and WHU dataset. The robustness and validity of the improved mechanism are demonstrated by control groups of ablation experiments. In comparative experiments with the HRnet, PSPNet, U-Net, DeepLabv3+ networks, and the original detection algorithm, the mIoU of the AISD, the MBD, and the WHU dataset is enhanced by 17.68%, 30.44%, and 15.26%, respectively. The results of the experiments show that the method of this paper is superior to comparative methods such as U-Net. Furthermore, it is better for integrity detection of building edges and reduces the number of missing and false detections.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3