Deep Learning Application for Classification of Ionospheric Height Profiles Measured by Radio Occultation Technique

Author:

Hsieh Mon-Chai,Huang Guan-Han,Dmitriev Alexei V.ORCID,Lin Chia-Hsien

Abstract

Modern space missions provide a great number of height profiles of ionospheric electron density, measured by the remote sensing technique of radio occultation (RO). The deducing of the profiles from the RO measurements suffers from bias, resulting in negative values of the electron density. We developed a machine learning technique that allows automatic identification of ionospheric layers and avoids the bias problem. An algorithm of convolutional neural networks was applied for the classification of the height profiles. Six classes of the profiles were distinguished on the base of prominent ionospheric layers F2, Es, E, F1 and F3, as well as distorted profiles (Sc). For the models, we selected the ground truth of more than 712 height profiles measured by the COSMIC/Formosat-3 mission above Taiwan from 2011 to 2013. Two different models, a 1D convolutional neural network (CNN) and fully convolutional network (FCN), were applied for classification. It was found that both models demonstrate the best classification performance, with the average accuracy around 0.8 for prediction of the F2 layer-related class and the E layer-related class. The F1 layer is classified by the models with good performance (>0.7). The CNN model can effectively classify the Es layer with an accuracy of 0.75. The FCN model has good classification performance (0.72) for the Sc-related profiles. The lowest performance (<0.4) was found for the F3 layer-related class. It was shown that the more complex FCN model has better classification performance for both large-scale and small-scale variations in the height profiles of the ionospheric electron density.

Funder

Ministry of Science and Technology of the People's Republic of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3