Intelligent LED Certification System in Mass Production

Author:

Malykhina Galina,Tarkhov Dmitry,Shkodyrev Viacheslav,Lazovskaya TatianaORCID

Abstract

It is impossible to effectively use light-emitting diodes (LEDs) in medicine and telecommunication systems without knowing their main characteristics, the most important of them being efficiency. Reliable measurement of LED efficiency holds particular significance for mass production automation. The method for measuring LED efficiency consists in comparing two cooling curves of the LED crystal obtained after exposure to short current pulses of positive and negative polarities. The measurement results are adversely affected by noise in the electrical measuring circuit. The widely used instrumental noise suppression filters, as well as classical digital infinite impulse response (IIR), finite impulse response (FIR) filters, and adaptive filters fail to yield satisfactory results. Unlike adaptive filters, blind methods do not require a special reference signal, which makes them more promising for removing noise and reconstructing the waveform when measuring the efficiency of LEDs. The article suggests a method for sequential blind signal extraction based on a cascading neural network. Statistical analysis of signal and noise values has revealed that the signal and the noise have different forms of the probability density function (PDF). Therefore, it is preferable to use high-order statistical moments characterizing the shape of the PDF for signal extraction. Generalized statistical moments were used as an objective function for optimization of neural network parameters, namely, generalized skewness and generalized kurtosis. The order of the generalized moments was chosen according to the criterion of the maximum Mahalanobis distance. The proposed method has made it possible to implement a multi-temporal comparison of the crystal cooling curves for measuring LED efficiency.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3