Natural Time Analysis of Global Navigation Satellite System Surface Deformation: The Case of the 2016 Kumamoto Earthquakes

Author:

Yang Shih-SianORCID,Potirakis Stelios M.,Sasmal Sudipta,Hayakawa Masashi

Abstract

In order to have further evidence of the atmospheric oscillation channel of the lithosphere-atmosphere-ionosphere coupling (LAIC), we have studied criticality in global navigation satellite system (GNSS) surface deformation as a possible agent for exciting atmospheric gravity waves (AGWs) in the atmosphere and GNSS fluctuations in the frequency range of AGWs with the use of the natural time (NT) method. The target earthquake (EQ) is the 2016 Kumamoto EQ with its main shock on 15 April 2016 (M = 7.3, universal time). As the result of the application of the NT method to GNSS data, we found that for the one-day sampled GNSS deformation data and its fluctuations in two AGW bands of 20–100 and 100–300 min, we could detect a criticality in the period of 1–14 April, which was one day to two weeks before the EQ. These dates of criticalities are likely to overlap with the time periods of previous results on clear AGW activity in the stratosphere and on the lower ionospheric perturbation. Hence, we suggest that the surface deformation could be a possible candidate for exciting those AGWs in the stratosphere, leading to the lower ionospheric perturbation, which lends further support to the AGW hypothesis of the LAIC process.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference68 articles.

1. Very-low-to low-frequency sounding of ionospheric perturbations and possible association with earthquakes;Hayakawa,2018

2. Seismo Electromagnetics and Related Phenomena: History and Latest Results;Molchanov,2008

3. Statistical analysis of the ionospheric ion density recorded by DEMETER in the epicenter areas of earthquakes as well as in their magnetically conjugate point areas

4. Earthquake precursors observed in the ionospheric F-region;Liu,2009

5. A statistical study on seismo-ionospheric precursors of the total electron content associated with 146 M ≥ 6.0 earthquakes in Japan during 1998–2011;Liu,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3