Lower-ionosphere anomalies prior to strong earthquakes that occurred in north-central mainland Greece on March 2021 as revealed by multi-method analysis of VLF sub-ionospheric propagation data

Author:

Politis Dimitrios Z.1ORCID,Potirakis Stelios M.2,Contoyiannis Yiannis3,Potamitis Ilyas4,Sasmal Sudipta5,Yang Shih-Sian6,Hayakawa Masashi7

Affiliation:

1. Department of Electrical and Electronics Engineering, University of West Attic

2. Dept. of Electrical and Electronics Engineering,University of West Attica

3. Department of Electrical and Electronics Engineering, University of West Attica

4. Department of Music Technology & Acoustics, Hellenic Mediterranean University

5. Institute of Astronomy, Space and Earth Science,Kolkata, India

6. Department of Space Science and Engineering, National Central University, Taiwan

7. Hayakawa Institute of Seismo Electromagnetics

Abstract

In this work we present the multi-method analysis of very low frequency (VLF) data, acquired by the radio receiver with call name UWA, located in Athens (Greece), in the University of West Attica, focusing on two strong ( ) earthquakes (EQs) that occurred in north-central mainland Greece sequentially, on 3 and 4 March 2021, with very close epicenters. Specifically, we used the data acquired from seven VLF transmitters located in Europe, North/North-West to UWA, and their propagation paths include the specific EQs epicenters. We analyzed these data using multiple analysis methods in order to investigate for possible EQ-related anomalies, taking also into account all the other possibly ionosphere-influencing extreme events that occurred during the studied period. Especially, we applied the “nighttime fluctuation method” (NFM), as well as, the “terminator time method” (TTM) in order to reveal any statistical anomaly in the nighttime amplitude recordings of VLF sub-ionospheric propagation data within 15 days before each one examined EQs. Also, we calculated the scalogram (wavelet power spectrum over time) using Morlet mother wavelet of the same nighttime data searching for possible imprints of wave-like structures during the same time period. In terms of criticality analysis, first we applied the “natural time” (NT) analysis method to the daily-valued NFM VLF propagation quantities, and subsequently applied the “method of critical fluctuations” (MCF) to the raw nighttime amplitude VLF recordings, to check for any criticality signatures up to two weeks before the examined EQs. Taking into account all the above-mentioned analysis results, we conclude that there are multiple indications that the lower ionosphere was indeed disturbed due to the preparation processes of the above-mentioned EQs, offering different types of seismogenic indications.

Publisher

Instituto Nazionale di Geofisica e Vulcanologia, INGV

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3