Laboratory Experiments on Ice Melting: A Need for Understanding Dynamics at the Ice-Water Interface

Author:

McCutchan Aubrey1ORCID,Johnson Blair1ORCID

Affiliation:

1. Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX 78712, USA

Abstract

The ice-ocean interface is a dynamic zone characterized by the transfer of heat, salinity, and energy. Complex thermodynamics and fluid dynamics drive fascinating physics as ice is formed and lost under variable conditions. Observations and data from polar regions have shed light on the contributions that oceanic currents, meltwater plumes, subglacial hydrology, and other features of the ice-ocean boundary region can make on melting and transport. However, the complicated interaction of mechanisms related to ice loss remain difficult to discern, necessitating laboratory experiments to explore fundamental features of melting dynamics via controlled testing with rigorous measurement techniques. Here, we put forward a review of literature on laboratory experiments that explore ice loss in response to free and forced convective flows, considering melting based on laminar or turbulent flow conditions, ice geometries representing a range of idealized scenarios to those modeling glaciers found in nature, and features such as salinity and stratification. We present successful measurement techniques and highlight findings useful to understanding polar ice dynamics, and we aim to identify future directions and needs for experimental research to complement ongoing field investigations and numerical simulations to ultimately improve predictions of ice loss in our current and evolving climate.

Funder

National Science Foundation Graduate Research Fellowship

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3