Robust Building Extraction for High Spatial Resolution Remote Sensing Images with Self-Attention Network

Author:

Zhou DengjiORCID,Wang Guizhou,He Guojin,Long TengfeiORCID,Yin RanyuORCID,Zhang Zhaoming,Chen Sibao,Luo BinORCID

Abstract

Building extraction from high spatial resolution remote sensing images is a hot spot in the field of remote sensing applications and computer vision. This paper presents a semantic segmentation model, which is a supervised method, named Pyramid Self-Attention Network (PISANet). Its structure is simple, because it contains only two parts: one is the backbone of the network, which is used to learn the local features (short distance context information around the pixel) of buildings from the image; the other part is the pyramid self-attention module, which is used to obtain the global features (long distance context information with other pixels in the image) and the comprehensive features (includes color, texture, geometric and high-level semantic feature) of the building. The network is an end-to-end approach. In the training stage, the input is the remote sensing image and corresponding label, and the output is probability map (the probability that each pixel is or is not building). In the prediction stage, the input is the remote sensing image, and the output is the extraction result of the building. The complexity of the network structure was reduced so that it is easy to implement. The proposed PISANet was tested on two datasets. The result shows that the overall accuracy reached 94.50 and 96.15%, the intersection-over-union reached 77.45 and 87.97%, and F1 index reached 87.27 and 93.55%, respectively. In experiments on different datasets, PISANet obtained high overall accuracy, low error rate and improved integrity of individual buildings.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3