Abstract
Extracting buildings from very high resolution (VHR) images has attracted much attention but is still challenging due to their large varieties in appearance and scale. Convolutional neural networks (CNNs) have shown effective and superior performance in automatically learning high-level and discriminative features in extracting buildings. However, the fixed receptive fields make conventional CNNs insufficient to tolerate large scale changes. Multiscale CNN (MCNN) is a promising structure to meet this challenge. Unfortunately, the multiscale features extracted by MCNN are always stacked and fed into one classifier, which make it difficult to recognize objects with different scales. Besides, the repeated sub-sampling processes lead to a blurred boundary of the extracted features. In this study, we proposed a novel parallel support vector mechanism (SVM)-based fusion strategy to take full use of deep features at different scales as extracted by the MCNN structure. We firstly designed a MCNN structure with different sizes of input patches and kernels, to learn multiscale deep features. After that, features at different scales were individually fed into different support vector machine (SVM) classifiers to produce rule images for pre-classification. A decision fusion strategy is then applied on the pre-classification results based on another SVM classifier. Finally, superpixels are applied to refine the boundary of the fused results using region-based maximum voting. For performance evaluation, the well-known International Society for Photogrammetry and Remote Sensing (ISPRS) Potsdam dataset was used in comparison with several state-of-the-art algorithms. Experimental results have demonstrated the superior performance of the proposed methodology in extracting complex buildings in urban districts.
Funder
National Natural Science Foundation of China
Subject
General Earth and Planetary Sciences
Cited by
67 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献