Towards an open pipeline for the detection of critical infrastructure from satellite imagery—a case study on electrical substations in The Netherlands

Author:

De Plaen Joël J-F GORCID,Koks Elco EORCID,Ward Philip JORCID

Abstract

Abstract Critical infrastructure (CI) are at risk of failure due to the increased frequency and magnitude of climate extremes related to climate change. It is thus essential to include them in a risk management framework to identify risk hotspots, develop risk management policies and support adaptation strategies to enhance their resilience. However, the lack of information on the exposure of CI to natural hazards prevents their incorporation in large-scale risk assessments. This study sets out to improve the representation of CI for risk assessment studies by building a neural network model to detect CI assets from optical remote sensing imagery. We present a pipeline that extracts CI from OpenStreetMap, processes the imagery and assets’ masks, and trains a Mask R-CNN model that allows for instance segmentation of CI at the asset level. This study provides an overview of the pipeline and tests it with the detection of electrical substations assets in the Netherlands. Several experiments are presented for different under-sampling percentages of the majority class (25%, 50% and 100%) and hyperparameters settings (batch size and learning rate). The highest scoring experiment achieved an Average Precision at an Intersection over Union of 50% of 30.93 and a tile F-score of 89.88%. This allows us to confirm the feasibility of the method and invite disaster risk researchers to use this pipeline for other infrastructure types. We conclude by exploring the different avenues to improve the pipeline by addressing the class imbalance, Transfer Learning and Explainable Artificial Intelligence.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

Horizon 2020 Framework Programme

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3