Mountain Vegetation Classification Method Based on Multi-Channel Semantic Segmentation Model

Author:

Wang Baoguo12ORCID,Yao Yonghui1ORCID

Affiliation:

1. State Key Laboratory of Resources and Environmental Information System, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China

2. University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

With the development of satellite remote sensing technology, a substantial quantity of remote sensing data can be obtained every day, but the ability to extract information from these data remains poor, especially regarding intelligent extraction models for vegetation information in mountainous areas. Because the features of remote sensing images (such as spectral, textural and geometric features) change with changes in illumination, viewing angle, scale and spectrum, it is difficult for a remote sensing intelligent interpretation model with a single data source as input to meet the requirements of engineering or large-scale vegetation information extraction and updating. The effective use multi-source, multi-resolution and multi-type data for remote sensing classification is still a challenge. The objective of this study is to develop a highly intelligent and generalizable classification model of mountain vegetation utilizing multi-source remote sensing data to achieve accurate vegetation extraction. Therefore, a multi-channel semantic segmentation model based on deep learning, FCN-ResNet, is proposed to integrate the features and textures of multi-source, multi-resolution and multi-temporal remote sensing data, thereby enhancing the differentiation of different mountain vegetation types by capturing their characteristics and dynamic changes. In addition, several sets of ablation experiments are designed to investigate the effectiveness of the model. The method is validated on Mt. Taibai (part of the Qinling-Daba Mountains), and the pixel accuracy (PA) of vegetation classification reaches 85.8%. The results show that the proposed multi-channel semantic segmentation model can effectively discriminate different vegetation types and has good intelligence and generalization ability in different mountainous areas with similar vegetation distributions. The multi-channel semantic segmentation model can be used for the rapid updating of vegetation type maps in mountainous areas.

Funder

National Key R&D Program

National Natural Science Foundation of China

Key Project of Innovation LREIS

Publisher

MDPI AG

Reference57 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3