Vegetation Coverage in the Desert Area of the Junggar Basin of Xinjiang, China, Based on Unmanned Aerial Vehicle Technology and Multisource Data

Author:

Miao Yuhao,Zhang Renping,Guo Jing,Yi Shuhua,Meng BaopingORCID,Liu Jiaqing

Abstract

Vegetation coverage information is an important indicator of desert ecological environments. Accurately grasping vegetation coverage changes in desert areas can help in assessing the quality of ecosystems and maintaining their functions. Improving remote sensing methods to detect the vegetation coverage in areas of low vegetation coverage is an important challenge for the remote sensing of vegetation in deserts. In this study, based on the fusion of MOD09GA and MOD09GQ data, 2019–2021 low-altitude unmanned aerial vehicle (UAV) remote sensing data, and other factors (such as geographical, topographic, and meteorological factors), three types of inversion models for vegetation coverage were constructed: a multivariate parametric regression model, a support vector machine (SVM) regression model, and a back-propagation neural network (BPNN) regression model. The optimal model was then used to map the spatial distribution of vegetation coverage and its dynamic change in the Junggar Basin of Xinjiang, China, over 22 years (from 2000 to 2021). The results show that: (1) The correlation between enhanced vegetation index (EVI) obtained from image fusion and vegetation coverage in desert areas is the highest (r = 0.72). (2) Among the geographical and topographic factors, only longitude and latitude were significantly correlated with vegetation coverage (p < 0.05). The average monthly temperature and precipitation from the previous six months were correlated with the vegetation coverage (p < 0.05), but the vegetation coverage of the current month had the highest correlation with the average temperature (r = −0.27) and precipitation (r = 0.33) of the previous month. (3) Among the multivariate parametric models established by selecting the five aforementioned factors, the multiple linear regression model performed the best (R2 = 0.64). (4) The SVM regression model was superior to the other regression models (R2 = 0.80, mean squared error = 8.35%). (5) The average vegetation coverage in the desert area of the Junggar Basin was 7.36%, and from 2000–2021, the vegetation coverage in 54.59% of the desert area increased.

Funder

National Natural Science Foundation of China

Special Funds of The Central Government

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3