Abstract
The objective of this study is to examine the impact of the number of calibration repetitions on hydrologic model performance and parameter uncertainty in varying climatic conditions. The study is performed in a pristine alpine catchment in the Western Tatra Mountains (the Jalovecký Creek catchment, Slovakia) using daily data from the period 1989–2018. The entire data set has been divided into five 6-years long periods; the division was based on the wavelet analysis of precipitation, air temperature and runoff data. A lumped conceptual hydrologic model TUW (“Technische Universität Wien”) was calibrated by an automatic optimisation using the differential evolution algorithm approach. To test the effect of the number of calibrations in the optimisation procedure, we have conducted 10, 50, 100, 300, 500 repetitions of calibrations in each period and validated them against selected runoff and snow-related model efficiency criteria. The results showed that while the medians of different groups of calibration repetitions were similar, the ranges (max–min) of model efficiency criteria and parameter values differed. An increasing number of calibration repetitions tend to increase the ranges of model efficiency criteria during model validation, particularly for the runoff volume error and snow error, which were not directly used in model calibration. Comparison of model efficiencies in climate conditions that varied among the five periods documented changes in model performance in different periods but the difference between 10 and 500 calibration repetitions did not change much between the selected time periods. The results suggest that ten repetitions of model calibrations provided the same median of model efficiency criteria as a greater number of calibration repetitions and model parameter variability and uncertainty were smaller.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献