Türkiye'nin nehirlerinde eksik akım verilerinin tamamlanması için çeşitli veri odaklı tekniklerin performans değerlendirmesi

Author:

YILMAZ Muhammet1ORCID,TOSUNOĞLU Fatih1ORCID

Affiliation:

1. ERZURUM TECHNICAL UNIVERSITY

Abstract

Missing data with gaps is always an obstacle to effective planning and management of water resources. Complete and reliable hydrological time series are necessary for the optimal design of water resources. A study was conducted to fill in missing streamflow data of 54 observation stations across Turkey. This process was done with the aid of various statistical estimation methods. Estimations were performed by using Linear regression (LR), Artificial neural network (ANN), adaptive neuro-fuzzy inference system (ANFIS), Support vector machine (SVM), Multivariate Adaptive regression splines (MARS), and K-nearest neighbor (KNN) methods. Performances of infilling methods were evaluated based on four performance criteria; namely, root mean squared error (RMSE), coefficient of determination (R2), mean absolute error (MAE), and the Kling–Gupta efficiency (KGE) during training and test periods. Reliable and long streamflow data from surrounding stations were selected as input to fill in missing streamflow data for an output station. The results revealed that a single method cannot be specified as the best-fit method for the study area. During the test phase, the R2 ranged from 0.54 to 0.99, and the KGE range was between 0.62 and 0.98. This study showed that especially SVM and MARS methods are suitable for estimating missing streamflow data in Turkey’s rivers. These findings will provide reliable streamflow data that can be used in hydrological modeling and water resources planning and management.

Publisher

Deu Muhendislik Fakultesi Fen ve Muhendislik

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3