An Automatic Parameter Calibration Method for the TUW Model in Streamflow Modeling

Author:

Yılmaz Muhammet1ORCID

Affiliation:

1. ERZURUM TECHNICAL UNIVERSITY

Abstract

The accurate modelling of streamflow is highly significant for hydrological monitoring, water resource management, and climate change studies. Streamflow simulation with lumped hydrological models has been widely performed by researchers. However, the parameter calibration process is a major obstacle in these models. In the present study, a conceptual rainfall-runoff model (TUW model) was used to simulate streamflow in the sub-basin of the Upper Euphrates Basin during the time period 1991-2009. The Differential Evolution Optimization (DEoptim) algorithm were tested for the automatic parameter calibration of the lumped version of TUW model, in the study area. The model is calibrated using two objective function named and Nash–Sutcliffe efficiency (NSE) and Kling-Gupta Efficiency (KGE). Additionally, percent bias (PBias) was used to evaluate the performance of the model. For the objective function NSE, calibration and validation results indicated good agreement between observed and simulated streamflow data with NSE, 0.76 and 0.76 and KGE, 0.73 and 0.75 and PBias (%), -0.8 and -7.5, respectively. Similarly for KGE objective function, the calibration results produced a NSE of 0.71, KGE of 0.85, and PBias (%) of -0.9, while validation results revealed a NSE of 0.72, KGE of 0.84, and PBias (%) of -7.2. It can be concluded that the applicability of the DEoptim algorithm for the estimation of the parameters of the TUW model is confirmed by the case study. The findings of the study can serve as a guide for researchers and be useful in achieving watershed management goals.

Publisher

Igdir University

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3