Calibration of hydrological models for ungauged catchments by automatic clustering using a differential evolution algorithm: The Gorganrood river basin case study

Author:

Alizadeh Zahra1,Yazdi Jafar1

Affiliation:

1. 1 Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

Abstract The hydrological model calibration is a challenging task, especially in ungauged catchments. The regionalization calibration methods can be used to estimate the parameters of the model in ungauged sub-catchments. In this article, the model of ungauged sub-catchments is calibrated by a regionalization approach based on automatic clustering. Under the clustering procedure, gauged and ungauged sub-catchments are grouped based on their physical characteristics and similarity. The optimal number of clusters is determined using an automatic differential evolution algorithm-based clustering. Considering obtained five clusters, the value of the silhouette measure is equal to 0.56, which is an acceptable value for goodness of clustering. The calibration process is conducted according to minimizing errors in simulated peak flow and total flow volume. The Storm Water Management Model is applied to calibrate a set of 53 sub-catchments in the Gorganrood river basin. Comparing graphically and statistically simulated and observed runoff values and also calculating the value of the silhouette coefficient demonstrate that the proposed methodology is a promising approach for hydrological model calibration in ungauged catchments.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

Reference98 articles.

1. Classification of drainage basins according to their physical characteristics: An application for flood frequency analysis in Scotland;Journal of Hydrology,1986

2. Assessment of some combinations of hard and fuzzy clustering techniques for regionalisation of catchments in Sefidroud basin;Journal of Hydroinformatics,2016

3. Simultaneous regionalization of gauged and ungauged watersheds using a missing data clustering method;Journal of Hydrologic Engineering,2020

4. Development of an entropy method for groundwater quality monitoring network design;Environmental Processes,2018

5. Analysis of continuous streamflow regionalization methods within a virtual setting;Hydrological Sciences Journal,2016

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3