Assessment of some combinations of hard and fuzzy clustering techniques for regionalisation of catchments in Sefidroud basin

Author:

Ahani Ali1,Mousavi Nadoushani S. Saeid1

Affiliation:

1. Department of Water Resources Management, Faculty of Civil, Water and Environmental Engineering, Shahid Beheshti University, Tehran, Iran

Abstract

Cluster analysis methods are a type of well-known technique for regionalisation of catchments to perform regional flood frequency analysis. In this study, a fuzzy extension of hybrid clustering algorithms is evaluated. Self-organizing feature maps and four hierarchical clustering algorithms were used to provide the initial cluster centres for fuzzy c-means (FCM) algorithm. The hybrid approach was used for regionalisation of catchments in Sefidroud basin based on feature vectors including five catchment attributes: longitude and latitude, drainage area, runoff coefficient and mean annual precipitation. The results showed that according to the values of both the objective function and the cluster validity indices, the performances of FCM algorithm often was improved by using the proposed hybrid approach. Also, it was evident from the results that in the case of minimizing the objective function, the combination of Ward's algorithm and FCM provided best results, but according to the cluster validity indices, other hybrid algorithms such as combinations of single linkage or complete linkage and FCM algorithm presented the most desirable results. In addition, according to the results, there are two well-defined homogeneous regions in Sefidroud basin identified by all the examined hybrid algorithms.

Publisher

IWA Publishing

Subject

Atmospheric Science,Geotechnical Engineering and Engineering Geology,Civil and Structural Engineering,Water Science and Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3