Characterization and Expression of Phospholipase D Putatively Involved in Colletotrichummusae Disease Development of Postharvest Banana Fruit

Author:

Yi PingORCID,Li Li,Sun Jian,He Xuemei,Li Changbao,Sheng Jinfeng,Xin Ming,Ling Dongning,Li Zhichun,Tang YayuanORCID,Liu Guoming

Abstract

Phospholipase D (PLD) in plants plays an important role in growth, development, and stress response. The effect of hexanal on PLD in banana fruit responding to Colletotrichum musae infection remains poorly understood. In this study, four putative PLD genes, named as MaPLD1, MaPLD2, MaPLD3, and MaPLD4 were identified from banana fruit. The four MaPLDs can be classified into three of the seven known PLD families according to sequence characterization. Their deduced amino acid sequences displayed homology of PLDs from other plant species. Furthermore, the specific expression analysis of PLD genes in banana fruit in response to infection in C. musae was studied and the response relationship between PLD family members and banana fruit under anthracnose stress was clarified. Changes in both the activity of PLD and PLC, and the connection between hexanal and phospholipases in the banana fruit C. musae infection were compared. The results showed that the incidence of disease in banana inoculated with C. musae was dramatically increased after 6 days of storage, the activation of PLD and PLC in infected anthracnose fruit before disease development, and that this activation was inhibited by hexanal treatment, which suggested that both enzymes play a protective role in banana fruit to cope with C. musae infection and the participation of hexanal in their regulation. Of the four MaPLD genes, the anthracnose had a stronger effect on MaPLD1 and MaPLD4. These data demonstrated that hexanal treatment could enhance fruit disease resistance to C. musae, and that PLD could take part in the disease defensive system of harvested banana fruit to C. musae by modulating the metabolism of cell membrane lipids, and thus suppress disease development in C. musae -inoculated banana during storage.

Funder

National Natural Science Foundation of China

China Agriculture Research System of MOF and MARA

Guangxi Natural Science Foundation

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3