Quality Improvement of Tomato Fruits by Preharvest Application of Chitosan Oligosaccharide

Author:

Zheng Jirong1,Chen Hao2,Wang Tonglin1,Mustafa Ghazala234ORCID,Liu Lihong2,Wang Qiaomei2,Shao Zhiyong1

Affiliation:

1. Institute of Vegetable, Hangzhou Academy of Agricultural Science, Hangzhou 310024, China

2. State Agricultural Ministry Laboratory of Horticultural Crop Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou 310058, China

3. Lishui Institute of Agriculture and Forestry Sciences, Lishui 323000, China

4. Department of Plant Sciences, Quaid-I-Azam University, Islamabad 45320, Pakistan

Abstract

Chitosan oligosaccharide (COS), a degradation product of chitosan, is easily accessible, highly bioactive, non-toxic, and well-soluble in water. The effects of COS on the qualitative attributes of tomato fruits were investigated in the current study. COS was administered to tomato plants (Solanum lycopersicum cv. Ruixinghongniu) by foliar spray and root irrigation in alternate cycles at concentrations of 0.5 g·L−1 and 0.16 g·L−1, respectively. The experimental outcomes revealed that COS treatment promoted the coloring and softening of tomato fruits. Lycopene, vitamin C, fructose, and glucose levels increased by 49.0%, 25.4%, 30.2%, and 33.4%, respectively, in COS-treated ripe fruits compared to controls. The volatile metabolome showed that COS application also increased the release of ten volatiles correlated with consumer preference (1-penten-3-one, (E)-2-pentenal, (E)-3-hexen-1-ol, (E)-2-heptenal, 2-isobutylthiazole, phenylacetaldehyde, 2-phenylethanol, 6-methyl-5-hepten-2-one, 6-methyl-5-hepten-2-ol, and β-ionone), contributing to an improved tomato flavor. Moreover, increased transcript levels of genes participating in ethylene biosynthesis, perception, and response along with enhanced ethylene production were observed in COS-treated fruits, suggesting that COS may regulate tomato fruit quality via the ethylene pathway. Taken together, our results indicated that the pre-harvest application of COS could improve tomato fruit quality attributes.

Funder

National Natural Science Foundation of China

Hangzhou Academy of Agricultural Sciences

National Key R&D Program of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3