Efficiency of Reductive Soil Disinfestation Affected by Soil Water Content and Organic Amendment Rate

Author:

Zhu Rui,Huang Xinqi,Zhang Jinbo,Cai Zucong,Li XunORCID,Wen Teng

Abstract

Reductive Soil Disinfestation (RSD) is a good method which can restore degraded greenhouse soil and effectively inactivate soil-borne pathogens. However, the approach needs to be optimized in order to facilitate its practical application in various regions. In the present work, we investigated the effect of soil water content (60% water holding capacity (WHC), 100% WHC and continuous flooding) and maize straw application rates (0, 5, 10, and 20 g kg−1 soil) on the improvement of soil properties and suppression of soil-borne pathogens (Fusarium oxysporum, Pythium and Phytophthora). The results showed that increasing the soil water content and maize straw application rate accelerated the removal of excess sulfate and nitrate in the soil and elevated the soil pH. Elevating the water content and maize straw application rate also produced much more organic acids, which could strongly inhibit soil-borne pathogens. Soil properties were improved significantly after RSD treatment with a maize straw amendment rate of more than 5 g kg−1, regardless of the water content. However, RSD treatments with 60% WHC could not effectively inactivate soil-borne pathogens and even stimulated their growth by increasing the maize application rate. RSD treatments of both 100% WHC and continuous flooding could inactivate soil-borne pathogens and increase the pathogens mortality indicated by cultural cells relatively effectively. The inhibited pathogens were significantly increased with the increasing maize application rate from 5 g kg−1 to 10 g kg−1, but were not further increased from 10 g kg−1 to 20 g kg−1. A further increased mortality of F. oxysporum, indicated by gene copies, was also observed when the soil water content and maize straw application rate were increased. Therefore, RSD treatment with 60% WHC could improve soil properties significantly, whereas irrigation with 100% WHC or continuous flooding was a necessity for effective soil-borne pathogens suppression. Holding 100% WHC and applicating maize straw at 10 g kg−1 soil were optimum conditions for RSD field operation to restore degraded greenhouse soil.

Funder

the Key-Area Research and Development Program of Guangdong Province

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3