Effects of Plastic Shed Cultivation System on the Properties of Red Paddy Soil and Its Management by Reductive Soil Disinfestation

Author:

Liu Liangliang,Long Sha,Deng Baoping,Kuang Jiali,Wen Kexin,Li Tao,Bai Zurong,Shao Qin

Abstract

Red paddy soil is widely distributed in the south of China and has become an important production system for food and cash crops. However, the key factors limiting the quality of this soil type under the plastic shed cultivation system and the effective management strategies are still unclear. In the present study, the physicochemical and microbial properties of red paddy soil in a plastic shed (PS-Soil) and open-air (OA-Soil) cultivation systems were compared. Subsequently, reductive soil disinfestation (RSD) and organic fertilizer treatment (OF) were used to improve the soil properties in a representative PS-Soil. Results showed that the physicochemical and microbial properties in PS-Soil were significantly altered compared with those in the nearby OA-Soil, and those differences were primarily dominated by the cultivation system rather than the sampling site. Specifically, the electrical conductivity (EC) and available nutrients (NO3−-N, NH4+-N, available K, and available P) contents, as well as the abundances of fungi, potential fungal soil-borne pathogens (F. oxysporum and F. solani), and fungi/bacteria were significantly increased in PS-Soil. In addition, the OF treatment could not effectively improve the above-mentioned soil properties, which was mainly reflected by that soil EC and the abundances of potential fungal soil-borne pathogens were considerably increased in the OF-treated soil. In contrast, soil EC and NO3−-N content, the abundances of fungi, F. oxysporum, F. solani, and fungi/bacteria were remarkably decreased by 76%, 99%, 98%, 92%, 73%, and 85%, respectively. Moreover, soil pH, the abundance of bacteria, total microbial activity, metabolic activity, and carbon source utilization were significantly increased in the RSD-treated soil. Collectively, red paddy soil is significantly degraded under the plastic shed cultivation system, and RSD rather than OF can effectively improve the quality of this soil type.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

The Key Research and Development Project (Agriculture) of Yichun City

Publisher

MDPI AG

Subject

Horticulture,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3