Facilitating effects of the reductive soil disinfestation process combined with Paenibacillus sp. amendment on soil health and physiological properties of Momordica charantia

Author:

Liu Liangliang,Xie Yi,Zhong Xin,Deng Quanquan,Shao Qin,Cai Zucong,Huang Xinqi

Abstract

Reductive soil disinfestation (RSD) is an anaerobic and facultative anaerobic microbial-mediated soil management process. The extent of improvement of diseased soil properties by RSD relative to comparable healthy soil is, however, not well characterized. Importantly, how to promote the colonization efficiency of these facultative anaerobic functional species to ensure soil and plant health remain unknown. Here, Fusarium wilt-diseased soil of Momordica charantia grown under a plastic-shed field (PS-CK) was used to conduct molasses-RSD (MO-RSD) along with Paenibacillus sp. (a model of facultative anaerobic species) (MOPA-RSD) treatment, and the soil from a nearby open-air paddy field was considered comparable healthy soil (OA-CK). Both RSD treatments significantly improved the properties of PS-CK soil, and the extent of improvement of soil pH, Fusarium oxysporum reduction efficiency (98.36%~99.56%), and microbial community and functional composition were higher than that achieved for OA-CK soil, which indicated that RSD-regulated most soil properties outperformed those of the comparable healthy soil. The disease incidence and ascorbic acid content of M. charantia in MO-RSD- and MOPA-RSD-treated soils were considerably decreased, while the weight and soluble protein contents were correspondingly increased, as compared to those of M. charantia in PS-CK soil. Specifically, the changes in these physiological properties of M. charantia in MOPA-RSD soil performed well than that in MO-RSD soil. The relative abundances of Cohnella, Effusibacillus, Rummeliibacillus, Oxobacter, Thermicanus, and Penicillium enriched in both RSD-treated soils were positively correlated with Paenibacillus and negatively correlated with F. oxysporum population and disease incidence (P < 0.05). Notably, the relative abundances of these potential probiotics were considerably higher in MOPA-RSD-treated soil than in MO-RSD alone-treated soil. These results show that the RSD process with inoculation of Paenibacillus sp. could promote the colonization of this species and simultaneously stimulate the proliferation of other probiotic consortia to further enhance soil health and plant disease resistance.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3