Role of Reductive Soil Disinfestation and Chemical Soil Fumigation on the Fusarium Wilt of Dioscorea batatas Decne Suppression

Author:

Shao Qin12,Li Xiaopeng1,Zhao Tian1,Wu Yiyang1,Xiang Liqin1,Pan Shengfu1,Guo Zihan1,Liu Liangliang12

Affiliation:

1. College of Life Science and Environmental Resources, Yichun University, Yichun 336000, China

2. Engineering Technology Research Center of Jiangxi Universities and Colleges for Selenium Agriculture, Yichun University, Yichun 336000, China

Abstract

Reductive soil disinfestation (RSD) and chemical soil fumigation (CSF) comprise the most popular pre-planting soil management strategies. Their efficiency in suppressing several plant diseases in agricultural production systems has been compared. However, the disease-control effect of these methods on Fusarium wilt disease in Dioscorea batatas Decne (D. batatas) remains unclear. Importantly, dissimilarities in the impact of their bio-predictors on plant health have not been well characterized. Herein, four treatments, including no treatment (CK), RSD with gran chaff (GC-RSD) and molasses (MO-RSD), and CSF with dazomet (DA-CSF), were performed in a pot experiment using D. batatas-diseased soil. Compared with the CK treatment, the Fusarium oxysporum population significantly decreased by 88.89–97.78% following the DA-CSF, GC-RSD, and MO-RSD treatments. The bacterial community and functional composition of the soil were considerably altered by these treatments. However, the incidence of Fusarium wilt disease in D. batatas was significantly decreased in the two RSD-treated soils, rather than in DA-CSF-treated soils. Bacterial α-diversity and population as well as some key nitrogen-related functional gene expressions as bio-predictors were significantly lower in DA-CSF-treated soil than in RSD-treated soil. In particular, the core (e.g., Azotobacter, Phenylobacterium, Clostridium, Bradyrhizobium, Microvirga, and Caulobacter) and unique (e.g., Pseudomonas, Brevundimonas, Flavobacterium, Ochrobactrum, and Sphingobacterium) functional microbiomes in RSD-treated soil exerted a positive impact on soil functional composition of the soil and plant growth. Taken together, our results indicate that RSD outperformed CSF in promoting plant health by regulating the bacterial community and functional composition.

Funder

National Natural Science Foundation of China

Primary Research and Development Plan of Jiangxi Province

Education Department of Jiangxi Province

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3