Nanostructured Lipid-Based Delivery Systems as a Strategy to Increase Functionality of Bioactive Compounds

Author:

Gasa-Falcon AriadnaORCID,Odriozola-Serrano Isabel,Oms-Oliu Gemma,Martín-Belloso Olga

Abstract

Acquisition of a healthy lifestyle through diet has driven the food manufacturing industry to produce new food products with high nutritional quality. In this sense, consumption of bioactive compounds has been associated with a decreased risk of suffering chronic diseases. Nonetheless, due to their low solubility in aqueous matrices, high instability in food products during processing and preparation as well as poor bioavailability, the use of such compounds is sometimes limited. Recent advancements in encapsulation and protection of bioactive compounds has opened new possibilities for the development of novel food products. In this direction, the present review is attempting to describe encapsulation achievements, with special attention to nanostructured lipid-based delivery systems, i.e., nanoemulsions, multi-layer emulsions and liposomes. Functionality of bioactive compounds is directly associated with their bioavailability, which in turn is governed by several complex processes, including the passage through the gastrointestinal tract and transport to epithelial cells. Therefore, an overview of recent research on the properties of these nanostructured lipid-based delivery systems with a strong impact on the functionality of bioactive compounds will be also provided. Nanostructured lipid-based delivery systems might be used as a potential option to enhance the solubility, stability, absorption and, ultimately, functionality of bioactive compounds. Several studies have been performed in this line, modifying the composition of the nanostructures, such as the lipid-type or surfactants. Overall, influencing factors and strategies to improve the efficacy of encapsulated bioactive compounds within nanostructures have been successfully identified. This knowledge can be used to design effective targeted nanostructured lipid-based delivery systems for bioactive compounds. However, there is still a lack of information on food interactions, toxicity and long-term consumption of such nanostructures.

Funder

Fondo Europeo de Desarrollo Regional

Publisher

MDPI AG

Subject

Plant Science,Health Professions (miscellaneous),Health (social science),Microbiology,Food Science

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3