A Non-Array Type Cut to Shape Soft Slip Detection Sensor Applicable to Arbitrary Surface

Author:

Kim Sung JoonORCID,Lee Seung HoORCID,Moon HyungpilORCID,Choi Hyouk RyeolORCID,Koo Ja ChoonORCID

Abstract

The presence of a tactile sensor is essential to hold an object and manipulate it without damage. The tactile information helps determine whether an object is stably held. If a tactile sensor is installed at wherever the robot and the object touch, the robot could interact with more objects. In this paper, a skin type slip sensor that can be attached to the surface of a robot with various curvatures is presented. A simple mechanical sensor structure enables the cut and fit of the sensor according to the curvature. The sensor uses a non-array structure and can operate even if a part of the sensor is cut off. The slip was distinguished using a simple vibration signal received from the sensor. The signal is transformed into the time-frequency domain, and the slippage was determined using an artificial neural network. The accuracy of slip detection was compared using four artificial neural network models. In addition, the strengths and weaknesses of each neural network model were analyzed according to the data used for training. As a result, the developed sensor detected slip with an average of 95.73% accuracy at various curvatures and contact points.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Modeling of Soft Fingertip for Precise Sliding Prediction;2023 International Conference on Advanced Robotics and Mechatronics (ICARM);2023-07-08

2. Slip Anticipation for Grasping Deformable Objects Using a Soft Force Sensor;2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2022-10-23

3. Real-Time Position Detecting of Large-Area CNT-based Tactile Sensors based on Artificial Intelligence;Korean Journal of Metals and Materials;2022-10-05

4. Localized displacement phenomenon of a sliding soft fingertip under different grasp force for slip prediction on prosthetic hand;Measurement;2022-05

5. New Flexible Tactile Sensor Based on Electrical Impedance Tomography;Micromachines;2022-01-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3