Real-Time Position Detecting of Large-Area CNT-based Tactile Sensors based on Artificial Intelligence

Author:

Cho Min-Young,Kim Seong Hoon,Kim Ji Sik

Abstract

For medical device and artificial skin applications, etc., large-area tactile sensors have attracted strong interest as a key technology. However, only complex and expensive manufacturing methods such as fine pattern alignment technology have been considered. To replace the existing smart sensor, which has to go through a complicated process, a new approach including a simple piezoresistive patch based on artificial intelligence has been suggested. Specifically, a 16-electrode terminal was connected to the edge of a polydimethylsiloxane pad where multi-walled carbon nanotube sheets are well dispersed, and a voltage input to the center of the specimen. The collected data was calculated using a voltage divider circuit to collect the voltage data. 54 random positions were marked on the pad. 4 positions were configured as the validation data set and 50 positions as the training data set. We examined whether it was possible to determine points in untrained positions using a deep neural network (DNN) and 12 different machine learning (ML) algorithms. The result of a deep neural network for untrained point location identification was MSE: 0.00026, R2: 0.991158, and the result of Random Forest, an ensemble model among ML algorithms, was MSE: 0.00845, R2: 0.971239. Real-time position detection is possible using smart sensors created by combining simple bulk materials and artificial intelligence models from research results.

Funder

Ministry of Science and ICT

National Research Foundation of Korea

Publisher

The Korean Institute of Metals and Materials

Subject

Metals and Alloys,Surfaces, Coatings and Films,Modeling and Simulation,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Characterisation of Salt-E-Skin: Soft Saline-Filled Large-Scale Tactile E-Skin;2024 IEEE 7th International Conference on Soft Robotics (RoboSoft);2024-04-14

2. Diagnosis of Mechanoluminescent Crack Based on Double Deep Learning in Al 7075;Korean Journal of Metals and Materials;2023-12-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3