Multi-Agent-Based Coordinated Control of ABS and AFS for Distributed Drive Electric Vehicles

Author:

Zhang Niaona,Wang Jieshu,Li Zonghao,Li Shaosong,Ding Haitao

Abstract

A vehicle with a four-channel anti-lock braking system (ABS) has poor safety and stability when braking on a low-adhesion road or off-road. In view of this situation, this paper proposes a multi-objective optimization coordinated control method for ABS and AFS based on multi-agent model predictive control (MPC). Firstly, the single-wheel control method is adopted to establish the single-wheel equation based on the slip rate and the stability equation of the centroid yaw based on AFS. The four wheels and the centroid are regarded as agents. The mathematical model of distributed drive electric vehicles based on graph theory and the coordinated control of AFS and ABS is established to reduce the dimension of the model. Secondly, on the basis of the multi-agent theory, an integrated coordinated control method for AFS and ABS based on distributed model predictive control (DMPC) is proposed to realize the ideal values of the vehicle’s slip rate, yaw rate, and sideslip angle, and improve the braking safety and handling stability of the vehicle. Then, to solve the problems of high levels of resource consumption, low real-time performance, and complex implementation in the optimization of the DMPC solution, a prediction solution method using a discrete simplified dual neural network (SDNN) is proposed to balance the computational efficiency and system dynamic performance. Finally, a hardware-in-the-loop (HIL) test bench is built to test the effectiveness of the proposed method under the conditions of a low-adhesion road and an off-road.

Funder

Niaona Zhang

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference31 articles.

1. Overview of integrated control for vehicle dynamics;Yu;J. Agric. Mach.,2008

2. Present Situation and Development Trend of Automotive Chassis Control Technology;Chen;Automot. Eng.,2006

3. Review on Dynamic Control of Distributive Drive Electric Vehicle Chassis;Yin;J. Chongqing Univ. Technol. (Nat. Sci.),2016

4. Chassis integrated control for 4WIS distributed drive EVs with model predictive control based on the UKF observer

5. Robust LMI-Based H-Infinite Controller Integrating AFS and DYC of Autonomous Vehicles With Parametric Uncertainties

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3