Allometric Equations for Predicting Agave lechuguilla Torr. Aboveground Biomass in Mexico

Author:

Flores-Hernández Cristóbal de J.ORCID,Méndez-González Jorge,Sánchez-Pérez Félix de J.,Méndez-Encina Fátima M.,López-Díaz Óscar M.,López-Serrano Pablito M.ORCID

Abstract

Quantifying biomass is important for determining the carbon stores in land ecosystems. The objective of this study was to predict aboveground biomass (AGB) of Agave lechuguilla Torr., in the states of Coahuila (Coah), San Luis Potosí (SLP) and Zacatecas (Zac), Mexico. To quantify AGB, we applied the direct method, selecting and harvesting representative plants from 32 sampling sites. To predict AGB, the potential and the Schumacher–Hall equations were tested using the ordinary least squares method using the average crown diameter (Cd) and total plant height (Ht) as predictors. Selection of the best model was based on coefficient of determination (R2 adj.), standard error (Sxy), and the Akaike information criterion (AIC). Studentized residues, atypical observations, influential data, normality, variance homogeneity, and independence of errors were also analyzed. To validate the models, the statistic prediction error sum of squares (PRESS) was used. Moreover, dummy variables were included to define the existence of a global model. A total of 533 A. lechuguilla plants were sampled. The highest AGB was 8.17 kg; the plant heights varied from 3.50 cm to 118.00 cm. The Schumacher–Hall equation had the best statistics (R2 adj. = 0.77, Sxy = 0.418, PRESS = 102.25, AIC = 632.2), but the dummy variables revealed different populations of this species, that is, an equation for each state. Satisfying the regression model assumptions assures that the predictions of A. lechuguilla AGB are robust and efficient, and thus able to quantify carbon reserves of the arid and semiarid regions of Mexico.

Publisher

MDPI AG

Subject

Forestry

Reference79 articles.

1. Climate Change: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change,2014

2. El Papel de la Naturaleza en el Cambio Climáticohttps://ec.europa.eu/environment/pubs/pdf/factsheets/Nature%20and%20Climate%20Change/Nature%20and%20Climate%20Change_ES.pdf

3. Biomass Equations and Assessment of Carbon Stock of Calligonum polygonoides L., a Shrub of Indian Arid Zone

4. Bosques, Cambio Climático y REDD+ en México. Guía Básica,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3