Dummy regression to predict dry fiber in Agave lechuguilla Torr. in two large-scale bioclimatic regions in Mexico

Author:

López-Díaz José Óscar M.,Méndez-González JorgeORCID,López-Serrano Pablito M.,Sánchez-Pérez Félix de J.,Méndez-Encina Fátima M.,Mendieta-Oviedo Rocío,Sosa-Díaz Librado,Flores AndrésORCID,García-Montiel Emily,Cambrón-Sandoval Víctor H.,Zermeño-González AlejandroORCID,Corral Rivas José J.

Abstract

Agave lechuguilla Torr., of the family Agavaceae, is distributed from southwestern United States to southern Mexico and is one of the most representative species of arid and semiarid regions. Its fiber is extracted for multiple purposes. The objective of this study was to generate a robust model to predict dry fiber yield (Dfw) rapidly, simply, and inexpensively. We used a power model in its linear form and bioclimatic areas as dummy variables. Training, generation (80%) and validation (20%) of the model was performed using machine learning with the package ‘caret’ of R. Using canonical correlation analysis (CCA), we evaluated the relationship of Dwf to bioclimatic variables. The principal components analysis (PCA) generated two bioclimatic zones, each with different A. lechuguilla productivities. We evaluated 499 individuals in four states of Mexico. The crown diameter (Cd) of this species adequately predicts its fiber dry weight (R2 = 0.6327; p < 0.05). The intercept 0), slope [lnCd (β1)], zone [(β2)] and interaction [lnCd:Zona (β3)] of the dummy model was statistically significant (p < 0.05), giving origin to an equation for each bioclimatic zone. The CCA indicates a positive correlation between minimum temperature of the coldest month (Bio 6) and Dwf (r = 0.84 and p < 0.05). In conclusion, because of the decrease in Bio 6 of more than 0.5°C by 2050, the species could be vulnerable to climate change, and A. lechuguilla fiber production could be affected gradually in the coming years.

Funder

National Council of Science and Technology

Forestry National Commission

Publisher

Public Library of Science (PLoS)

Subject

Multidisciplinary

Reference42 articles.

1. Biomasa y productividad en las zonas áridas mexicanas.;O Briones;Madera y Bosques,2018

2. Modelos predictivos para la producción de productos forestales no maderables: Lechuguilla.;BE Velasco;Manual Técnico Num. 2: INIFAP,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3