Recent Advancements in Applications of Graphene to Attain Next-Level Solar Cells

Author:

Bagade Sonal Santosh1ORCID,Patel Shashidhar2,Malik M. M.3,Patel Piyush K.1

Affiliation:

1. Renewable Energy Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal 462003, India

2. Government Polytechnic, Shahjahanpur 242001, India

3. Nanotechnology Research Laboratory, Department of Physics, Maulana Azad National Institute of Technology, Bhopal 462003, India

Abstract

This paper presents an intensive review covering all the versatile applications of graphene and its derivatives in solar photovoltaic technology. To understand the internal working mechanism for the attainment of highly efficient graphene-based solar cells, graphene’s parameters of control, namely its number of layers and doping concentration are thoroughly discussed. The popular graphene synthesis techniques are studied. A detailed review of various possible applications of utilizing graphene’s attractive properties in solar cell technology is conducted. This paper clearly mentions its applications as an efficient transparent conducting electrode, photoactive layer and Schottky junction formation. The paper also covers advancements in the 10 different types of solar cell technologies caused by the incorporation of graphene and its derivatives in solar cell architecture. Graphene-based solar cells are observed to outperform those solar cells with the same configuration but lacking the presence of graphene in them. Various roles that graphene efficiently performs in the individual type of solar cell technology are also explored. Moreover, bi-layer (and sometimes, tri-layer) graphene is shown to have the potential to fairly uplift the solar cell performance appreciably as well as impart maximum stability to solar cells as compared to multi-layered graphene. The current challenges concerning graphene-based solar cells along with the various strategies adopted to resolve the issues are also mentioned. Hence, graphene and its derivatives are demonstrated to provide a viable path towards light-weight, flexible, cost-friendly, eco-friendly, stable and highly efficient solar cell technology.

Publisher

MDPI AG

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3