Exfoliation of Molecular Solids by the Synergy of Ultrasound and Use of Surfactants: A Novel Method Applied to Boric Acid

Author:

Calistri Sara12ORCID,Ubaldini Alberto1ORCID,Telloli Chiara1ORCID,Gennerini Francesco3,Marghella Giuseppe1ORCID,Gessi Alessandro1,Bruni Stefania1,Rizzo Antonietta1ORCID

Affiliation:

1. ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, C.R. Bologna, Via Martiri di Monte Sole 4, 40129 Bologna, Italy

2. Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy

3. Department of Electrical, Electronic and Information Engineering “Guglielmo Marconi” (DEI), Biomedical Engineering, Cesena Campus, University of Bologna, Via dell’Università 50, 47522 Cesena, Italy

Abstract

Boric acid, H3BO3, is a molecular solid made up of layers held together by weak van der Waals forces. It can be considered a pseudo “2D” material, like graphite, compared to graphene. The key distinction is that within each individual layer, the molecular units are connected not only by strong covalent bonds but also by hydrogen bonds. Therefore, classic liquid exfoliation is not suitable for this material, and a specific method needs to be developed. Preliminary results of exfoliation of boric acid particles by combination of ultrasound and the use of surfactants are presented. Ultrasound provides the system with the energy needed for the process, and the surfactant can act to keep the crystalline flakes apart. A system consisting of a saturated solution and large excess solid residue of boric acid was treated in this way for a few hours at 40 °C in the presence of various sodium stearate, proving to be very promising, and an incipient exfoliation was achieved.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3