Synthesis and physical characterization of novel Ag2S-CdS /Ag /GNP ternary nanocomposite

Author:

,Gahramanli L. R.,Bellucci S., ,Muradov M. B., ,La Pietra M., ,Eyvazova G. M., ,Gomez C. V., ,Bachmann J.,

Abstract

A new type of Ag2S-CdS/Ag/GNP nanocomposite material was successfully synthesized in the presented work. The structural and physical properties of compounds were studied separately and together. Ag2S-CdS/Ag/GNP nanocomposite materials were studied by Xray diffraction (XRD), Ultraviolet-Visible (UV-Vis), Fourier Transform Infrared (FTIR), Raman spectroscopy and Scanning Electron Microscopy (SEM). Based on the results, Ag nanowires (NWs) were successfully synthesized, and then it was determined that during the hybridization process, two phases of acanthite Ag2S and the cubic crystal system of Ag2O were formed. Then, Ag2S-CdS NWs were formed from mixed monoclinic Ag2S and hexagonal CdS. In the absorption spectrum of Ag NWs, the main absorbance peaks were observed at 357.3 nm and 380.2 nm. The energy gap (Eg) values of the Ag sample are 3.8 eV. The band gap value of Ag2S (2.5, 3.8, 4.6 eV) and Ag2S-CdS (2.5, 3.8, 4.8 eV) have a triple value due to the formation of a hybrid structure. The Raman spectrum of Ag2S-CdS belongs to longitudinal-optical (LO) phonon modes of zinc-blende phase CdS and for the 1, 2, and 3 times spin-coated samples on the surface of GNP/PVA have observed all characteristic Raman peaks, which belong to NWs at 485.13 cm-1, and 960.22 cm-1.

Publisher

Virtual Company of Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3