Author:
Wang Xianjie,Zhang Fan,Weng Zhenjiang,Jiang Xinyu,Wang Rushuang,Ren Hao,Zheng Feiyun
Abstract
At present, a large number of scholars have conducted related research on topology optimization for additive manufacturing (AM). However, there are few relevant research reports on the impact of different directions of additive manufacturing on the optimal design and manufacturing results. In this paper, using the bidirectional evolutionary optimization (BESO) method, anisotropic optimization analysis was carried out on space nodes that are currently popular in the field of additive manufacturing and topology optimization. The elastic constants in different directions were used as anisotropic material properties for optimization research in this paper through tensile testing, which was carried out on 316L stainless-steel specimens fabricated using Selective Laser Melting (SLM) technology. In addition, SEM analyses were performed to explore the microscopic appearance of the material. The study found that additive manufacturing is affected by the printing direction in terms of both macroscopic mechanical properties and microscopic material structure; the deformation obtained by anisotropic optimization was about 1.1–2.3% smaller than that obtained by isotropic optimization.
Funder
Key Laboratory of Civil Engineering Structure and Mechanics,Inner Mongolia University of Technology
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献