Energy Transfer Efficiency Based Nonlinear Ultrasonic Testing Technique for Debonding Defects of Aluminum Alloy Foam Sandwich Panels

Author:

Tu Jun12ORCID,Yao Nan12,Ling Yi12,Zhang Xu12ORCID,Song Xiaochun12ORCID

Affiliation:

1. School of Mechanical Engineering, Hubei University of Technology, Wuhan 430068, China

2. Hubei Key Laboratory of Modern Manufacturing Quality Engineering, Wuhan 430068, China

Abstract

In order to improve the accuracy of detection results of debonding defects of aluminum alloy thin plate, the nonlinear ultrasonic technology is used to detect the simulated defect samples, aiming at problems such as near surface blind region caused by the interaction of incident wave, reflected wave and even second harmonic wave in a short time due to the small thickness of thin plates. An integral method based on energy transfer efficiency is proposed to calculate the nonlinear ultrasonic coefficient to characterize the debonding defects of thin plates. A series of simulated debonding defects of different sizes were made using aluminum alloy plates with four thicknesses of 1 mm, 2 mm, 3 mm and 10 mm. By comparing the traditional nonlinear coefficient with the integral nonlinear coefficient proposed in this paper, it is verified that both methods can quantitatively characterize the size of debonding defects. The nonlinear ultrasonic testing technology based on energy transfer efficiency has higher testing accuracy for thin plates.

Funder

the Key Research and Development Plan Project of Hubei Province

the Central Committee Guides Local Special Projects for Science and Technology Development

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3