Fractional Derivative Gradient-Based Optimizers for Neural Networks and Human Activity Recognition

Author:

Herrera-Alcántara OscarORCID

Abstract

In this paper, fractional calculus principles are considered to implement fractional derivative gradient optimizers for the Tensorflow backend. The performance of these fractional derivative optimizers is compared with that of other well-known ones. Our experiments consider some human activity recognition (HAR) datasets, and the results show that there is a subtle difference between the performance of the proposed method and other existing ones. The main conclusion is that fractional derivative gradient descent optimizers could help to improve the performance of training and validation tasks and opens the possibility to include more fractional calculus concepts to neural networks applied to HAR.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference33 articles.

1. Neural Networks and Learning Machines;Haykin,2009

2. An overview of gradient descent optimization algorithms;Ruder;arXiv,2016

3. Adaptive Subgradient Methods for Online Learning and Stochastic Optimization;Duchi;J. Mach. Learn. Res.,2011

4. ADADELTA: An Adaptive Learning Rate Method;Zeiler;arXiv,2012

5. Neural Networks for Machine Learning;Tieleman,2012

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3