An Adaptive Learning Rate Deep Learning Optimizer Using Long and Short-Term Gradients Based on G–L Fractional-Order Derivative

Author:

Chen Shuang,Zhang Changlun,Mu Haibing

Abstract

AbstractDeep learning model is a multi-layered network structure, and the network parameters that evaluate the final performance of the model must be trained by a deep learning optimizer. In comparison to the mainstream optimizers that utilize integer-order derivatives reflecting only local information, fractional-order derivatives optimizers, which can capture global information, are gradually gaining attention. However, relying solely on the long-term estimated gradients computed from fractional-order derivatives while disregarding the influence of recent gradients on the optimization process can sometimes lead to issues such as local optima and slower optimization speeds. In this paper, we design an adaptive learning rate optimizer called AdaGL based on the Grünwald–Letnikov (G–L) fractional-order derivative. It changes the direction and step size of parameter updating dynamically according to the long-term and short-term gradients information, addressing the problem of falling into local minima or saddle points. To be specific, by utilizing the global memory of fractional-order calculus, we replace the gradient of parameter update with G–L fractional-order approximated gradient, making better use of the long-term curvature information in the past. Furthermore, considering that the recent gradient information often impacts the optimization phase significantly, we propose a step size control coefficient to adjust the learning rate in real-time. To compare the performance of the proposed AdaGL with the current advanced optimizers, we conduct several different deep learning tasks, including image classification on CNNs, node classification and graph classification on GNNs, image generation on GANs, and language modeling on LSTM. Extensive experimental results demonstrate that AdaGL achieves stable and fast convergence, excellent accuracy, and good generalization performance.

Funder

the National Natural Science Foundation of China

the Fundamental Research Funds for Municipal Universities of Beijing University of Civil Engineering and Architecture

the BUCEA Post Graduate Innovation Project

Publisher

Springer Science and Business Media LLC

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3