Fractional Gradient Optimizers for PyTorch: Enhancing GAN and BERT

Author:

Herrera-Alcántara Oscar1ORCID,Castelán-Aguilar Josué R.2

Affiliation:

1. Departamento de Sistemas, Universidad Autónoma Metropolitana, Azcapotzalco 02200, Mexico

2. División de CBI, Universidad Autónoma Metropolitana, Azcapotzalco 02200, Mexico

Abstract

Machine learning is a branch of artificial intelligence that dates back more than 50 years. It is currently experiencing a boom in research and technological development. With the rise of machine learning, the need to propose improved optimizers has become more acute, leading to the search for new gradient-based optimizers. In this paper, the ancient concept of fractional derivatives has been applied to some optimizers available in PyTorch. A comparative study is presented to show how the fractional versions of gradient optimizers could improve their performance on generative adversarial networks (GAN) and natural language applications with Bidirectional Encoder Representations from Transformers (BERT). The results are encouraging for both state-of-the art algorithms, GAN and BERT, and open up the possibility of exploring further applications of fractional calculus in machine learning.

Publisher

MDPI AG

Subject

Statistics and Probability,Statistical and Nonlinear Physics,Analysis

Reference32 articles.

1. Haykin, S.S. (2009). Neural Networks and Learning Machines, Pearson Education. [3rd. ed.].

2. Descending through a Crowded Valley—Benchmarking Deep Learning Optimizers;Meila;Proceedings of the Proceedings of the 38th International Conference on Machine Learning,2021

3. Robbins, H., and Monro, S. (1951). A stochastic approximation method. Ann. Math. Stat., 400–407.

4. Kingma, D.P., and Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv.

5. Abdulkadirov, R., Lyakhov, P., and Nagornov, N. (2023). Survey of Optimization Algorithms in Modern Neural Networks. Mathematics, 11.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3