Solid-State Rotary Friction-Welded Tungsten and Mild Steel Joints

Author:

Skowrońska Beata,Bober Mariusz,Kołodziejczak PawełORCID,Baranowski Michał,Kozłowski Mirosław,Chmielewski TomaszORCID

Abstract

This paper is a study of the microstructure and other selected properties of solid-state, high-speed, rotary friction-welded tungsten and mild steel (S355) joints. Due to the high affinity of tungsten for oxygen, the welding process was carried out in a chamber with an argon protective atmosphere. Joints of suitable quality were obtained without any macroscopic defects and discontinuities. Scanning electron microscopy (SEM) was used to investigate the phase transformations taking place during the friction welding process. Chemical compositions in the interfaces of the welded joints were determined by using energy dispersive spectroscopy (EDS). The microstructure of friction welds consisted of a few zones, fine equiaxed grains (formed due to dynamic recrystallization) and ultrafine grains in the region on the steel side. A plastic deformation in the direction of the flash was visible mainly on the steel side. EDS-SEM scan line analyses across the interface did not confirm the diffusion of tungsten to iron. The nature of the friction welding dissimilar joint is non-equilibrium based on deep plastic deformation without visible diffusive processes in the interface zone. The absence of intermetallic phases was found in the weld interface during SEM observations. Mechanical properties of the friction-welded joint were defined using the Vickers hardness test and the instrumented indentation test (IIT). The results are presented in the form of a distribution in the longitudinal plane of the welded joint. The fracture during strength tests occurred mainly through the cleavage planes at the interface of the tungsten grain close to the friction surface.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3