Optimization of wire electrical discharge machining of pure tungsten using neural network and response surface methodology

Author:

Tzeng C-J1,Yang Y-K1,Hsieh M-H1,Jeng M-C2

Affiliation:

1. Department of Mechanical Engineering, Minghsin University of Science and Technology, Hsin Feng, Taiwan, Republic of China

2. Department of Mechanical Engineering, National Central University, Chung-Li, Taiwan, Republic of China

Abstract

The present study analysed the dependence of the material removal rate and workpiece surface finish on process parameters during the manufacture of pure tungsten profiles by wire electrical discharge machining (WEDM). A hybrid method including a back-propagation neural network (BPNN), a genetic algorithm (GA), and response surface methodology (RSM) was proposed to determine optimal parameter settings of the WEDM process. Specimens were prepared under different WEDM processing conditions based on a Taguchi orthogonal array table. The results of 18 experimental runs were utilized to train the BPNN to predict the material removal rate and roughness average properties. Simultaneously, the RSM and GA approaches were individually applied to search for an optimal setting. In addition, analysis of variance was implemented to identify significant factors for the WEDM process parameters, and results from the BPNN with integrated GA were compared with those from the RSM approach. The results show that the RSM and BPNN/GA methods are both effective tools for the optimization of WEDM process parameters.

Publisher

SAGE Publications

Subject

Industrial and Manufacturing Engineering,Mechanical Engineering

Cited by 45 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3