Adversarial Representation Learning for Hyperspectral Image Classification with Small-Sized Labeled Set

Author:

Zhang ShuhanORCID,Zhang Xiaohua,Li TianruiORCID,Meng Hongyun,Cao Xianghai,Wang Li

Abstract

Hyperspectral image (HSI) classification is one of the main research contents of hyperspectral technology. Existing HSI classification algorithms that are based on deep learning use a large number of labeled samples to train models to ensure excellent classification effects, but when the labeled samples are insufficient, the deep learning model is prone to overfitting. In practice, there are a large number of unlabeled samples that have not been effectively utilized, so it is meaningful to study a semi-supervised method. In this paper, an adversarial representation learning that is based on a generative adversarial networks (ARL-GAN) method is proposed to solve the small samples problem in hyperspectral image classification by applying GAN to the representation learning domain in a semi-supervised manner. The proposed method has the following distinctive advantages. First, we build a hyperspectral image block generator whose input is the feature vector that is extracted from the encoder and use the encoder as a feature extractor to extract more discriminant information. Second, the distance of the class probability output by the discriminator is used to measure the error between the generated image block and the real image instead of the root mean square error (MSE), so that the encoder can extract more useful information for classification. Third, GAN and conditional entropy are used to improve the utilization of unlabeled data and solve the small sample problem in hyperspectral image classification. Experiments on three public datasets show that the method achieved better classification accuracy with a small number of labeled samples compared to other state-of-the-art methods.

Funder

Aero-Science Fund

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference47 articles.

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3