Multi-Level Feature Extraction Networks for Hyperspectral Image Classification

Author:

Fang Shaoyi1ORCID,Li Xinyu1ORCID,Tian Shimao1,Chen Weihao1,Zhang Erlei1ORCID

Affiliation:

1. School of Information Engineering, Northwest A&F University, Xi’an 712100, China

Abstract

Hyperspectral image (HSI) classification plays a key role in the field of earth observation missions. Recently, transformer-based approaches have been widely used for HSI classification due to their ability to model long-range sequences. However, these methods face two main challenges. First, they treat HSI as linear vectors, disregarding their 3D attributes and spatial structure. Second, the repeated concatenation of encoders leads to information loss and gradient vanishing. To overcome these challenges, we propose a new solution called the multi-level feature extraction network (MLFEN). MLFEN consists of two sub-networks: the hybrid convolutional attention module (HCAM) and the enhanced dense vision transformer (EDVT). HCAM incorporates a band shift strategy to eliminate the edge effect of convolution and utilizes hybrid convolutional blocks to capture the 3D properties and spatial structure of HSI. Additionally, an attention module is introduced to identify strongly discriminative features. EDVT reconfigures the organization of original encoders by incorporating dense connections and adaptive feature fusion components, enabling faster propagation of information and mitigating the problem of gradient vanishing. Furthermore, we propose a novel sparse loss function to better fit the data distribution. Extensive experiments conducted on three public datasets demonstrate the significant advancements achieved by MLFEN.

Funder

National Natural Science Foundation of China

QinChuangyuan High-Level Innovation and Entrepreneurship Talent Program of Shaanxi

Chinese Universities Scientific Fund

Publisher

MDPI AG

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3