Spectral–Spatial Feature Extraction for Hyperspectral Image Classification Using Enhanced Transformer with Large-Kernel Attention

Author:

Lu Wen1,Wang Xinyu2,Sun Le23ORCID,Zheng Yuhui1ORCID

Affiliation:

1. The College of Computer, Qinghai Normal University, Xining 810000, China

2. School of Computer Science, Nanjing University of Information Science and Technology, Nanjing 210044, China

3. Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing 210044, China

Abstract

In the hyperspectral image (HSI) classification task, every HSI pixel is labeled as a specific land cover category. Although convolutional neural network (CNN)-based HSI classification methods have made significant progress in enhancing classification performance in recent years, they still have limitations in acquiring deep semantic features and face the challenges of escalating computational costs with increasing network depth. In contrast, the Transformer framework excels in expressing high-level semantic features. This study introduces a novel classification network by extracting spectral–spatial features with an enhanced Transformer with Large-Kernel Attention (ETLKA). Specifically, it utilizes distinct branches of three-dimensional and two-dimensional convolutional layers to extract more diverse shallow spectral–spatial features. Additionally, a Large-Kernel Attention mechanism is incorporated and applied before the Transformer encoder to enhance feature extraction, augment comprehension of input data, reduce the impact of redundant information, and enhance the model’s robustness. Subsequently, the obtained features are input to the Transformer encoder module for feature representation and learning. Finally, a linear layer is employed to identify the first learnable token for sample label acquisition. Empirical validation confirms the outstanding classification performance of ETLKA, surpassing several advanced techniques currently in use. This research provides a robust and academically rigorous solution for HSI classification tasks, promising significant contributions in practical applications.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3