Constraints on Newtonian Interplanetary Point-Mass Interactions in Multicomponent Systems from the Symmetry of Their Cycles

Author:

Hofmeister Anne M.,Criss Everett M.

Abstract

Interplanetary interactions are the largest forces in our Solar System that disturb the planets from their elliptical orbits around the Sun, yet are weak (<10−3 Solar). Currently, these perturbations are computed in pairs using Hill’s model for steady-state, central forces between one circular and one elliptical ring of mass. However, forces between rings are not central. To represent interplanetary interactions, which are transient, time-dependent, and cyclical, we build upon Newton’s model of interacting point-mass pairs, focusing on circular orbits of the eight largest bodies. To probe general and evolutionary behavior, we present analytical and numerical models of the interplanetary forces and torques generated during the planetary interaction cycles. From symmetry, over a planetary interaction cycle, radial forces dominate while tangential forces average to zero. Our calculations show that orbital perturbations require millennia to quantify, but observations are only over ~165 years. Furthermore, these observations are compromised because they are predominantly made from Earth, whose geocenter occupies a complex, non-Keplerian orbit. Eccentricity and inclination data are reliable and suggest that interplanetary interactions have drawn orbital planes together while elongating the orbits of the two smallest planets. This finding is consistent with conservation principles governing the eight planets, which formed as a system and evolve as a system.

Publisher

MDPI AG

Subject

Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)

Reference30 articles.

1. Numerical expressions for precession formulae and mean elements for the Moon and the planets;Simon;Astron. Astrophys.,1994

2. A new determination of lunar orbital parameters, precession constant and tidal acceleration from LLR measurements

3. Solar System Orreryhttps://in-the-sky.org/solarsystem.php

4. Links of planetary energetics to moon size, orbit, and planet spin: A new mechanism for plate tectonics

5. Nonrelativistic contribution to Mercury’s perihelion precession

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3