Affiliation:
1. Department of Earth and Planetary Science, Washington University, St. Louis, MO 63130, USA
Abstract
Kepler’s discoveries were permitted by his remarkable insight to place the Sun at the focus of an elliptical planetary orbit. This coordinate system reduces a 2-dimensional orbit to a single spatial dimension. We consider an alternative coordinate system centered on the “image focus,” which is the symmetrical (mirror) counterpart of the “real focus” occupied by the Sun. Our analytical approach provides new purely geometric formulae and an exact relationship for the dynamic property of orbital time. In addition, considering the mirror symmetry of the ellipse leads to a simple approximation: the radial hand of an orbital clock rotates counterclockwise at a nearly steady angular velocity 2π/T about the “image focus,” where T is the orbital period. This approximation is a useful pedagogic tool and has good accuracy for orbits with low to moderate eccentricities, since the deviation from the exact result goes as eccentricity squared. Planetary comparisons are made. In particular, the angular speeds of Mercury and Jupiter are highly variable in the geocentric and heliocentric reference frames, but are nearly constant in the image focus reference frame. Our findings resolve whether the image focus is the location for observing uniform motion of an elliptical orbit, and pertain to their stability.
Subject
Physics and Astronomy (miscellaneous),General Mathematics,Chemistry (miscellaneous),Computer Science (miscellaneous)
Reference28 articles.
1. Kepler and the origins of the theory of gravity;Hecht;Am. J. Phys.,2019
2. Prasolov, V., and Solovyev, Y. (1997). Elliptic Functions and Elliptic Integrals, American Mathematical Society.
3. Trends in 20th Century Celestial Mechanics;Ito;Publ. Natl. Astron. Obs. Jpn.,2007
4. The secular perturbations of the planets;Hill;Am. J. Math.,1901
5. The relativity effect in planetary motions;Clemence;Rev. Mod. Phys.,1947