Parameterization of the Collection Efficiency of a Cylindrical Catching-Type Rain Gauge Based on Rainfall Intensity

Author:

Cauteruccio AriannaORCID,Lanza Luca G.ORCID

Abstract

Despite the numerous contributions available in the literature about the wind-induced bias of rainfall intensity measurements, adjustments based on collection efficiency curves are rarely applied operationally to rain records obtained from catching-type rain gauges. The many influencing variables involved and the variability of the results of field experiments do not facilitate the widespread application of adjustment algorithms. In this paper, a Lagrangian particle tracking model is applied to the results of computational fluid dynamic simulations of the airflow field surrounding a rain gauge to derive a simple formulation of the collection efficiency curves as a function of wind speed. A new parameterization of the influence of rainfall intensity is proposed. The methodology was applied to a cylindrical gauge, which has the typical outer shape of tipping-bucket rain gauges, as a representative specimen of most operational measurement instruments. The wind velocity is the only ancillary variable required to calculate the adjustment, together with the measured rainfall intensity. Since wind is commonly measured by operational weather stations, its use adds no relevant burden to the cost of meteo-hydrological networks.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference29 articles.

1. Methods of Correction for Systematic Error in Point Precipitation Measurement for Operational Use;Sevruk,1982

2. Mean seasonal and spatial variability in gauge-corrected, global precipitation

3. Guide to Meteorological Instruments and Methods of Observation,2014

4. Estimation of Wind-Induced Error of Rainfall Gauge Measurements Using a Numerical Simulation

5. LIV. On the deficiency of rain in an elevated rain-gauge, as caused by wind

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3