The Impact of Wind on Precipitation Measurements from a Compact Piezoelectric Sensor

Author:

Chinchella Enrico12ORCID,Cauteruccio Arianna12ORCID,Lanza Luca G.12ORCID

Affiliation:

1. a Department of Civil, Chemical and Environmental Engineering, Università di Genova, Genoa, Italy

2. b WMO Measurement Lead Centre “B. Castelli” on Precipitation Intensity, Genoa, Italy

Abstract

Abstract The measurement accuracy of an electroacoustic precipitation sensor, the Vaisala WXT520, is investigated to quantify the associated wind-induced bias. The device is widely used as a noncatching tool for measuring the integral features of liquid precipitation, specifically rainfall amount and intensity. A numerical simulation using computational fluid dynamics is used to determine the bluff-body behavior of the instrument when exposed to wind. The obtained airflow velocity patterns near the sensor are initially validated in a wind tunnel. Then, the wind-induced deviation and acceleration/deceleration of individual raindrop trajectories and the resulting impact on the measured precipitation are replicated using a Lagrangian particle tracking model. The sensor’s specific measurement principle necessitates redefining catch ratios and the collection efficiency in terms of the resulting kinetic energy and quantifying them as a function of particle Reynolds number and precipitation intensity, respectively. Wind speed and direction and drop size distribution have been simulated across various combinations. The results show that the measured precipitation is overestimated by up to 400% under the influence of wind. The presented adjustment curves can be used to correct raw rainfall measurements taken by the Vaisala WXT520 in windy conditions, either in real time or as a postprocessing function. The magnitude of the adjustment at any operational aggregation level largely depends on the local rainfall and wind regimes at the site of measurement and may have a strong impact on applications in regions where wind is frequent during low- to medium-intensity precipitation.

Publisher

American Meteorological Society

Reference38 articles.

1. Study of mesh quality improvement for CFD analysis of an airfoil;Aqilah, F.,2018

2. Observations of rain-induced near-surface salinity anomalies;Asher, W. E.,2014

3. Calibration uncertainty of non-catching precipitation gauges;Baire, Q.,2022

4. Mesh generation: Art or science?;Baker, T. J.,2005

5. Upper ocean response to Typhoon Choi-Wan as measured by the Kuroshio Extension Observatory mooring;Bond, N. A.,2011

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3