Abstract
Automatic modulation discrimination (AMC) is one of the critical technologies in spatial cognitive communication systems. Building a high-performance AMC model in intelligent receivers can help to realize adaptive signal synchronization and demodulation. However, tackling the intra-class diversity problem is challenging to AMC based on deep learning (DL), as 16QAM and 64QAM are not easily distinguished by DL networks. In order to overcome the problem, this paper proposes a joint AMC model that combines DL and expert features. In this model, the former builds a neural network that can extract the time series and phase features of in-phase and quadrature component (IQ) samples, which improves the feature extraction capability of the network in similar models; the latter achieves accurate classification of QAM signals by constructing effective feature parameters. Experimental results demonstrate that our proposed joint AMC model performs better than the benchmark networks. The classification accuracy is increased by 11.5% at a 10 dB signal-to-noise ratio (SNR). At the same time, it also improves the discrimination of QAM signals.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献