CrossTLNet: A Multitask-Learning-Empowered Neural Network with Temporal Convolutional Network–Long Short-Term Memory for Automatic Modulation Classification

Author:

Gao Gujiuxiang1,Hu Xin1ORCID,Li Boyan1,Wang Weidong1,Ghannouchi Fadhel M.2ORCID

Affiliation:

1. School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China

2. iRadio Lab, University of Calgary, Calgary, AB T2N 1N4, Canada

Abstract

Amidst the evolving landscape of non-cooperative communication, automatic modulation classification (AMC) stands as an essential pillar, enabling adaptive and reliable signal processing. Due to the advancement of deep learning (DL) technology, neural networks have found application in AMC. However, the previous DL models face the inter-class confusion problem in high-order modulations. To address this issue, we propose a multitask-learning-empowered hybrid neural network, named CrossTLNet. Specifically, after the signal enters the model, it is first transformed into two task components: in-phase/quadrature (I/Q) form and amplitude/phase (A/P) form. For each task, we design a method that combines a temporal convolutional network (TCN) with a long short-term memory (LSTM) network to effectively capture long-term dependency features in high-order modulations. To enable interaction between these two different dimensional features, we innovatively introduce a cross-attention method, thereby further enhancing the model’s ability to distinguish signal features. Moreover, we also design a simple and efficient knowledge distillation method to reduce the size of CrossTLNet, making it easier to deploy in real-time or resource-limited scenarios. The experimental results indicate that the suggested method exhibits exceptional performance in AMC on public benchmarks, especially in high-order modulations.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Reference17 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3