Mathematical Modeling of Lactobacillus paracasei CBA L74 Growth during Rice Flour Fermentation Performed with and without pH Control

Author:

Colucci Cante Rosa,Gallo MariannaORCID,Nigro Federica,Passannanti Francesca,Budelli Andrea,Nigro RobertoORCID

Abstract

The mathematical modeling of fermentation processes allows for the formulation of predictions about the kinetics of biomass growth and metabolite production as well as setting or verifying the best operative conditions in view of the economical convenience of the process. For this purpose, we performed a kinetic study of a rice flour fermentation process using Lactobacillus paracasei CBA L74 with and without pH control; the pH value was set to 5.8 under pH control. Monod, Logistic, and Contois models were proposed to describe the bacterial growth rate in both conditions. The best mathematical model, which was able to describe the experimental data obtained without pH control, was the Contois model, as the specific growth rate was influenced by both the glucose reduction (from 14.31 g/L to 10.22 g/L) and the biomass production (2 log growth) that occurred during fermentation. Conversely, when pH control was implemented, both Monod and Contois models satisfactorily described the specific growth rate trend. The estimated kinetic parameters confirmed that biomass production (2 log growth) and glucose consumption (from 14.31 g/L to 6.06 g/L) did not affect the microorganism’s growth capacity when the fermenting medium was maintained at an optimal pH. The lactic acid production rate described by the Luedeking–Piret model did not appear to be linked to growth in the absence of pH control while, on the other hand, this model was unsuitable for describing the experimental lactic acid concentration when pH control was applied. The kinetic modeling of lactic acid production and the percentage of added glucose in the protocol with controlled pH will be optimized in the future.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3