Attention-Enhanced Dual-Branch Residual Network with Adaptive L-Softmax Loss for Specific Emitter Identification under Low-Signal-to-Noise Ratio Conditions

Author:

Jing Zehuan1ORCID,Li Peng1,Wu Bin1ORCID,Yan Erxing1,Chen Yingchao1ORCID,Gao Youbing2

Affiliation:

1. School of Electronic Engineering, Xidian University, Xi’an 710071, China

2. Science and Technology on Electronic Information Control Laboratory, Chengdu 610036, China

Abstract

To address the issue associated with poor accuracy rates for specific emitter identification (SEI) under low signal-to-noise ratio (SNR) conditions, where the single-dimension radar signal characteristics are severely affected by noise, we propose an attention-enhanced dual-branch residual network structure based on the adaptive large-margin Softmax (ALS). Initially, we designed a dual-branch network structure to extract features from one-dimensional intermediate frequency data and two-dimensional time–frequency images, respectively. By assigning different attention weights according to their importance, these features are fused into an enhanced joint feature for further training. This approach enables the model to extract distinctive features across multiple dimensions and achieve good recognition performance even when the signal is affected by noise. In addition, we have introduced L-Softmax to replace the original Softmax and propose the ALS. This approach adaptively calculates the classification margin decision parameter based on the angle between samples and the classification boundary and adjusts the margin values of the sample classification boundaries; it reduces the intra-class distance for the same class while increasing the inter-class distance between different classes without the need for cumbersome experiments to determine the optimal value of decision parameters. Our experimental findings revealed that, in comparison to alternative methods, our proposed approach markedly enhances the model’s capability to extract features from signals and classify them in low-SNR environments, thereby effectively diminishing the influence of noise. Notably, it achieves the highest recognition rate across a range of low-SNR conditions, registering an average increase in recognition rate of 4.8%.

Funder

Science and Technology on Electronic Information Control Laboratory

Publisher

MDPI AG

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3