Radar Emitter Recognition Based on Spiking Neural Networks

Author:

Luo Zhenghao1ORCID,Wang Xingdong1,Yuan Shuo1,Liu Zhangmeng1

Affiliation:

1. College of Electronic Science and Technology, National University of Defense Technology, Changsha 410073, China

Abstract

Efficient and effective radar emitter recognition is critical for electronic support measurement (ESM) systems. However, in complex electromagnetic environments, intercepted pulse trains generally contain substantial data noise, including spurious and missing pulses. Currently, radar emitter recognition methods utilizing traditional artificial neural networks (ANNs) like CNNs and RNNs are susceptible to data noise and require intensive computations, posing challenges to meeting the performance demands of modern ESM systems. Spiking neural networks (SNNs) exhibit stronger representational capabilities compared to traditional ANNs due to the temporal dynamics of spiking neurons and richer information encoded in precise spike timing. Furthermore, SNNs achieve higher computational efficiency by performing event-driven sparse addition calculations. In this paper, a lightweight spiking neural network is proposed by combining direct coding, leaky integrate-and-fire (LIF) neurons, and surrogate gradients to recognize radar emitters. Additionally, an improved SNN for radar emitter recognition is proposed, leveraging the local timing structure of pulses to enhance adaptability to data noise. Simulation results demonstrate the superior performance of the proposed method over existing methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3